
symmetryS S

Brief Report

Energy, Christiaan Huygens, and the Wonderful
Cycloid—Theory versus Experiment

Yuval Ben-Abu 1,2,*,†, Ira Wolfson 3,†, Haim Eshach 4 and Hezi Yizhaq 5

1 Department of Physics and Project Unit, Sapir Academic College, Sderot 79165, Israel
2 Hemdat Hadarom Academic College of Education, Netivot 80200, Israel
3 Department of Physics, Ben-Gurion University of the Negev, Beer Sheva Campus 84990, Israel;

beastraban@gmail.com
4 The Department of Science and Technology Education, Ben-Gurion University of Negev,

Beer Sheva Campus 84990, Israel; uvba.1973@gmail.com
5 Department of Solar Energy and Environmental Physics, Jacob Blaustein Institute for Desert Research,

Ben-Gurion University of the Negev, Sede-Boker Campus 84990, Israel; youvalda@post.bgu.ac.il
* Correspondence: yuvalb@sapir.ac.il
† These authors contributed equally to this work.

Received: 4 February 2018; Accepted: 8 April 2018; Published: 16 April 2018
����������
�������

Abstract: The cycloid is one of the most intriguing objects in the classical physics world, at once
solving the brachistochrone and isochronous curve problems. Historically, the cycloid shape has
been employed to great success in many physical contexts. We discuss one such case, presenting the
longitude problem as a pathway into an in-depth discussion of the analytical solution of a point mass
motion along a cycloid. The classical solution is presented, and the modifications needed for a rolling
ball along a cycloid rail are made. A comparison is then made between the two cases, and we show
that the difference in most physical cases between the point mass and the rolling ball is at most ~7%.
Next, an experiment is presented in which the isochronous nature of the cycloid path is tested, to
different degrees of success. The results are discussed and several possible origins of the discrepancy
between the theory and the experimental results are identified. We conclude with a discussion of
skidding and slipless rolling.

Keywords: cycloid; brachistochrone; point mass; motion

1. Introduction

In 1662 the Royal British Academy announced a large monetary prize for building a precise
naval clock that would enable solving the problem of finding longitude in the high seas. One of the
problems that made navigating in the oceans difficult was finding longitude. While finding latitude
through simple astronomical observations was relatively easy, finding longitude was a most difficult
task. The British navy that ruled the oceans paid a high price for it. On 22 October 1707, three British
navy ships making their way from Gibraltar to England crashed into the rocks off one of the islands,
32 km from England’s southwest edge. In this accident, 2000 British sailors were killed [1]. This loss
emphasized the need to solve the longitude problem. In 1714, the British Parliament announced
the Longitude Act, which offered a prize of 20,000 pounds (a huge amount of money at the time) to
anyone who could solve the longitude problem [1–3]. Already in the second half of the 17th century,
it was clear that the solution to the problem lay in building a precise clock. Because one hour equals
15 degrees, it was understood that the measurement needed to be exact to the number of seconds in an
arc. Measuring the difference between the two clocks—one that shows the time in a home port and
one that shows the local time on a ship—enabled finding longitude in a precise way [1,2]. The said
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clock also needed to overcome the changes in weather and ship movements. For example, a regular
pendulum clock was influenced by the changes in temperature that caused changes in the length of
the string and therefore also caused changes in the pendulum’s cycle times [4].

The Dutch scientist Christiaan Huygens (1629–1695) responded to the challenge and decided
to upgrade Galileo’s pendulum clock. His idea was to build an isochronous curve, meaning, a
curved lane, upon which the motion time of the ball would not be dependent on the starting point.
This pendulum would enable the building of clocks that were more precise than regular pendulum
clocks, in which a mass moves along a pathway shaped as a circular arc. Huygens worked on this
problem and on developing clocks for a period of almost 40 years, between 1656 and 1693. He
succeeded in demonstrating that the desired curve was a cycloid (Figure 1)—one of the most famous
curves in mathematics that also solves the brachistochrone curve problem—finding the quickest
pathway between two points. On 7 January 1657, he wrote, “These days I have discovered a method of
building clocks, by means of which it will be possible to measure time so precisely that it will be possible
to measure longitude even in the ocean” [3]. As proof that the cycloid is an isochronous pathway, he
published a book entitled Horologium oscillatorium in 1673. Huygens proved this argument in an ingenious
way (see Appendix A) based on basic mechanical reasoning, without using infinitesimal mathematics [2–7].

Figure 1. A cycloid is the curve that is created by the pathway of the point that is on the perimeter of
the wheel without sliding. In this sketch, the parametric equations of a cycloid are presented, where a is
the radius of the wheel and θ is the angle that is defined in the illustration. When the wheel completes
a full circle, the angle changes from 0 to 2π.

In this manuscript, we explain Huygens’ theory by comparing the experiment with the
measurement of a ball’s dependency on motion time from its starting height during its motion
along different rails. This article is organized as follows: In the remainder of Section 1, we analytically
discuss the cycloid and the usual approximations made, and we study their impact using computer
simulations. Section 2 presents the methods and the experimental system, and Section 3 reviews the
results. We conclude the paper in Section 4, and provide some appendices for the sake of thoroughness.

1.1. The Cycloid: Coordinates, Equations of Motion, And Approximations

In this section, we lay the theoretical groundwork for this article. We first derive the cycloid
coordinates (Equation (4)). We then develop the Lagrangian and equations of motion for a point
mass on a cycloid path, or, equivalently, a cycloid pendulum (Equation (6)); switch to canonical
coordinates; and find the associated ω (Equation (11)). Finally, we add a rotational degree of freedom,
which accounts for the slipless roll dynamics, and, in turn, for the energy stored in the rotation of the
ball (Equations (14) and (15)). This is the framework necessary for understanding the isochronous
movement and for making sense of the experiments described in the next sections.

1.2. Cycloid Coordinates

The cycloid form is derived by tracking a point on the circumference of a spinning wheel moving
along a plane. Tracking a point on the circumference relative to the wheel’s center, where the wheel is
spinning clockwise, is given by
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{
x = acos(θ)

y = −asin(θ).
(1)

Adding the motion of the wheel on the plane, we have the following connection between xcm and
the rotation angle:

xcm = aθ. (2)

Thus, we are left with the following cycloid coordinates:{
x = a(θ + cos(θ))
y = a(1− sin(θ)).

(3)

The introduction of a phase shifts these coordinates to a more canonical form:{
x = a(θ + sin(θ))
y = a(1− cos(θ))

which reach phase and x0 calibration identical to the ones in Figure 1.

1.3. Equations of Motion for a Cycloid

Perhaps the best way to develop the equations of motion for the cycloid motion is through
Lagrangian mechanics. This has the added value, as we shall show, of identifying generalized
coordinates that simplify the problem greatly. We emphasize that in this following treatment we
neglect the rotational degree of freedom. The kinetic term is simply given by

K =
mv2

2
=

m
2

( .
x2

+
.
y2
)
= ma2

.
θ

2
[1 + cos(θ)]. (4)

The potential energy V is given by

V = mgy = mga[1− cos(θ)]. (5)

Thus, the full Lagrangian is given by

L = ma2
.
θ

2
[1 + cos(θ)]−mga[1− cos(θ)]. (6)

The above Lagrangian yields the following equation of motion, and angular momentum:
..
θ = − g

a

[
sin(θ)

1 + cos(θ)

]

Pθ = L = ma2
.
θ[1 + cos(θ)].

(7)

Note that the angular velocity is not a conserved quantity. This is a good reason to find the
conserved quantities in this system.

This Lagrangian can be written as

L = 2ma2
.
θ

2
cos2 θ

2
− 2mga sin2 θ

2
. (8)

We now move to the following generalized coordinate s:

s = 4a sin
θ

2
.
s = 2a

.
θ cos

θ

2
(9)

This allows us to write the Lagrangian in the form

L =
m

.
s2

2
− mgs2

8a
(10)

which is nothing but a harmonic oscillator Lagrangian in s, with the associated angular velocity
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ωs =
1
2

√
g
a

. (11)

Note that the angular velocity for s is conserved and that T = 4π =
√

a/g.

1.4. "Get the Ball Rolling"—Correcting for Angular Kinetic Energy

Thus far, the equation of motion was simple and analytically solvable. Now, we add the rotation
of the ball itself, with its radius r. The moment of inertia for a solid ball is given by (c.f. [5])

I =
2mr2

5
. (12)

The connection between θ, the cycloid angle, and the rotation of the ball around its central axis is
given by

rdφ = a
√

2 + 2 cos(θ)dθ ⇒ ω =
a

.
θ
√

2 + 2 cos(θ)
r

. (13)

So, the added term to the Lagrangian is given by

Kω =
Iω2

2
=

mr2ω2

5
=

2ma2[1 + cos(θ)]
.
θ

2

5
. (14)

The corrected Lagrangian is given by

L =
7ma2

.
θ

2
[1 + cos(θ)]

5
−mga[1− cos(θ)]. (15)

The equation of motion is then given by
..
θ =

sin(θ)
14(1 + cos(θ))

[
7

.
θ

2
− 5g

a

]
(16)

which, interestingly enough, does not seem to be dependent on the radius of the ball itself, nor on
its mass.

1.5. The Influence of Slipping While Rolling in Motion on Cycloid Pathways

As mentioned above, the effect of rolling on the motion in a cycloid path is not dependent on the
radius of the rolling ball. This can be seen in Equation (15), where the term for angular acceleration
does not depend on r. This is a consequence of the connection between the pathway angle θ and the
rolling angle of the ball φ as shown in Equation (13). An interesting question, then, is to what extent
slipping while rolling might change the movement and the period.

In order to answer that, we find the equation of motion for rolling, while applying instead of
Equation (13) a slightly different connection:

ω = (1− α)
a

.
θ
√

2 + 2 cos(θ)
r

(17)

where α is the relative part of the movement that is slipping; when there is no slipping, α = 0, and we
should revert to a rolling without slipping. This is obviously a crude model which bundles the slipping
into some fractional quantity, disregarding the position in which the slipping had occurred, etc.

The equations of motion are then given by

dPθ

dt
= − sin(θ)

[
5 + 2(1− α)2

5
ma2

.
θ

2
+ mga

]
(18)

where dPθ
dt =

2(5+2(1−α)2)
5 ma2

[
(1 + cos(θ)

..
θ − sin(θ)

.
θ

2
)

]
.

Now we add by hand the friction term to get

..
θ =

sin(θ)
1 + cos(θ)

 .
θ

2

2
−
( 5g

a

2(5 + 2(1− α)2)

)1 + αµk cot(α)

.
θ∣∣∣ .
θ
∣∣∣
. (19)
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One can easily see that when α = 0, we indeed revert back to the slipless roll case (Figure 2).

Figure 2. Rolling motion of a ball on a cycloid path, with slippage. α is the relative slipping factor,
which represents how much of the movement is slipping and how much is slipless rolling. µk was set
to 0.4, which is approximately the kinetic friction coefficient for steel on steel.

2. Methods

The Experimental System

The system was built in a laboratory at the Davidson Institute and included three main rails: a cycloid that
was created using a circle with a radius of 16 cm; an inclined plane with a sloping degree of 30◦; and a pathway
that was composed of a flexible rail, which could be used to change its shape (see Figures 3 and 4). A steel ball
can move along each one of the rails. The steel balls are held by permanent magnets that are in a small mobile
structure that can be moved along the length of the rail and change the height from which the ball can start
moving. The release of the ball is performed by an electromagnet. The electromagnet creates a magnetic field that
is reversed in its direction relative to the magnetic field of the permanent magnet that holds the ball. The ball is
released from rest by pressing a small switch on the side of the rail. The switch is additionally connected to a
PC for timing purposes. The balls on the cycloid’s rail and on the inclined plane can be released simultaneously.
The motion of the balls along the length of the rails can be well approximated by the sliding of a point mass, which
is a conclusion we reached with the help of an experiment on the inclined plane as well as precise analysis of the
motion (see above). In the next paragraph, several experiments are presented which can be performed with the
system. Every experiment has a suitable method by which the ball’s time in motion can be measured [2].

Figure 3. The experimental system: the cycloid, B; the inclined plane, C; and the flexible railing. In the
inset, one can see the electromagnets that were used in a controlled release of the balls on railings
A and B.
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3. Results and Discussion

In this experiment, the motion time of a small metal ball whose mass is m = 32.76 g and whose radius is 1 cm
was measured as a function of the initial height h on two different rails: the cycloid and the inclined plane (see
Figure 3). In each of the rails, we changed the starting height several times and measured the total motion time
from the moment of its release all the way to its bumping into the metal board that was placed at the bottom of
the rail. For accuracy’s sake, we averaged over three measurements for each height. (There was a sound sensor on
the metal board that was at the bottom of the rail, with which the motion time was measured—see a detailed
description in the frame in Figure 4). The experiment’s results are presented in the graphs in Figures 2 and 5–7.

Figure 4. A schematic description of the experimental system for measuring the duration of the ball’s
motion on one of the rails [4].

Figure 5. Duration times of the small ball’s movement on the cycloid (black crosses) and on the inclined
plane (red squares) as a function of the starting height as it was measured in the experiment.
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The results show that while the duration of movement in the descent of the inclined plane is dependent
on the starting height, the cycloid is indeed an isochronous (of equal times) curve, meaning that the duration of
the ball’s motion is not dependent on the starting point along the length of the cycloid path, and it stays almost
completely constant.

It is shown that with initial heights that are less than 30 cm, the ball that moves down the descent of the
inclined plane arrives first, while when h > 30 cm, the ball that moves in the cycloid rail “wins” [1,2].

The explanation for this is that when h > 30 cm, the starting points of the two rails become closer to each
other, meaning that the problem becomes identical to the brachistochrone problem (the fastest path), and the
cycloid pathway is the fastest out of all the possible pathways that connect the starting point with the finishing
point [3]. This could also be analyzed by progressively introducing “kinks” in an inclined path, such that in the
continuum limit we get a smooth curve that is the cycloid [4,5]. A comparison between the duration time achieved
in the experiment with the cycloid rail and the theoretical duration time is called for. The formula for frictionless,
rotationless motion time along a cycloid is used (as is shown above):

T = 4π

√
a
g

(20)

where a is the radius of the circle that created the cycloid. In the experiment, we measured the motion time from
a certain height all the way down to the bottom of the cycloid, meaning that we measured the duration of one
quarter of a motion [6–9]. The result was 0.444 s, in comparison with the theoretical duration of one quarter of a
motion T/4 = 0.402 s (substituting g = 980 cm/s2 and r = 16 cm into Equation (16)). This means that a relative
deviation of 10.45% was recorded.

In our opinion, the duration time measured is bigger than the calculated time per Equation (20) mostly
because the ball is not in a slipless slide regime. Part of its starting potential energy turns into circular kinetic
energy while another part goes to heat due to slip friction [6–11]. This was not considered in Equation (16) or
the theoretical analysis above. It is possible to compare this result with the measurement by using the optical
gateway of several movements (Experiment C described later on). There, the time interval recorded for a quarter
of a motion was 0.451 s. The relative deviation in this case has increased to 12.2%. We estimate that this difference
stems mainly from the fact that the measurement in the third experiment was performed without repetitions, as
compared with the three repetitions of the measurements that were performed with the sound sensor [1–3]. When
we compare the theory to the experiment in ball sliding on an incline without sliding, we can write the equation
of motion of the ball sliding and the sum of momentums across the center of mass of the balls. The equations are

ΣFx = mg sin β− fs = ma

ΣFy = N −mg cos β = 0

ΣτCM = fsR = mα = m a
R

(21)

with R, here, denoting the ball’s radius, and a the acceleration. By substituting the moment of inertia of a ball
around a central axis, I = 2/5mR2 in Equation (2), and assuming that the ball is on the threshold of movement,
the static friction force can be written as

fs = µsmg cos β. (22)

Thus, we obtain a condition for rolling without slippage to be obtained when

µs ≥
2
7

tan β. (23)

Figure 7 shows the moving time of a ball as a function of the initial height. By neglecting air friction and
rolling friction (i.e., a simple skid in a sloping plane), it can be shown that the final velocity of the ball starting to
slide from rest is

√
2gh. The use of motion formulas is accelerated and related as x = h/ sin β, and when x is the

distance of the slippage along the slope and β is the slope angle, we get

tsliding =
2x
v

=
2h

sin β
√

2gh
=

1
sin β

√
2h
g

. (24)
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Of course, we expect this theoretical time to be less than the measured time because, in reality, there is energy
deposited in the rotational kinetic energy as well as energy losses due to work wasted against skid, rolling friction,
and friction with the air (Figure 6).

Figure 6. The motion time of the ball along the sloped plain versus the initial height. The blue dots
indicate the measured time, the black line indicates the theoretical time of the plot without rolling, and
the red line describes the sliding time according to Equation (19); the correspondence between the
theory and the experiment is very good.

The Energy Consideration

Assuming the motion of the ball is a nonslip roll, we can calculate the real rolling time by using energy
conservation and the fact that the mass center acceleration of the ball is constant. According to the law of
conservation of energy, we can write

mgh =
mv2

2
+

Iω2

2
+ µrmg cos β · x (25)

in which the second expression on the right-hand side expresses the kinetic energy of the ball due to rotation
around its axis and is the angular speed of the ball, and I is the moment of inertia of the ball around its axis
and equal to 2/5mR2 when R is the radius of the ball. For friction without rolling we can use the connection
between the angular velocity and the linear velocity of the center of mass v = Rω. The last expression on the
right-hand side expresses the work that is wasted as a result of the skid friction. Rolling friction results from tiny
deformations of the surface resulting from the body rolling on it [5]. The rotational friction coefficient µr is usually
small compared with the coefficient of kinetic friction between the surfaces (this is the great advantage inherent in
the invention of the wheel). It is worth noting that the roll is caused by the static friction between the ball and the
surface, but because in the nonslip rotation the point of contact between the surface and the ball is at rest relative
to the surface, there is no loss of energy as a result of the static friction [2,4,6]. However, the rolling friction still
works. Of course, this also means that skid and slipless roll are mutually exclusive. Because the skid nature is
sparse (meaning most of the time there is no appreciable skid), and the difference between point mass sliding and
ball rotation is slight, we choose to encode the energy loss due to friction while skidding in a friction term.
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For rolling without sliding, the velocity of the center mass is v − Rω where ω is the angular velocity.
Assuming the ball starts from rest and letting µr be the coefficient of friction rolling, we obtain an updated
expression for the ball’s motion time as a function of height h:

Tsliding =
2

sin α

√
0.7 h

g(1− µr cot β)
. (26)

We measured it indirectly by using the energy conservation law and the smoothness of the ball along a
symmetrical inclined plane that we created using the flexible track (the slope angle of the flexible sloping plane
was 34.420). The reduction in the initial potential energy should be equal to the work of the rolling friction force:

∆Ep = mg∆h = µrmg cos θ (27)

where the height difference ∆h is between the starting point of the roll and the end point [7]. Several measurements
were performed and yielded µr = 0.044, which is a fairly reasonable value for the rolling friction coefficient.

According to energy conservation, the initial potential energy is equal to the sum of the kinetic energy,
the circular kinetic energy, and the work invested in the friction of the roll (Equation (23)); therefore, we now
separately express each of the energy components so that they can be calculated from t, which we can write as

v = at = g(sin β− µs cos β ) ≡ gγt (28)

where µs is the static friction between the ball and rail and γ = g(sin α− µs cos α). Therefore, we obtain for the
kinetic energy

Ek =
mv2

2
=

mg2γ2t2

2
. (29)

The static coefficient of friction between the ball and the rail can be estimated from mechanical considerations
(Equation (26)), and by Equation (25) we can get µs ≥ 0.185 for our system. Because the motion is rolling without
slipping, for the purpose of calculating the energy balance, the value is selected as µs = 0.185. The circular kinetic
energy can be expressed using angular velocity and the use of angular acceleration formulas:

ω ≈ αt =
µsmg cos β · R

I
. (30)

Thus, in general,

ω2 =
25
4

µ2
s g2 cos2 β

R2 t2. (31)

We get

Iω2

2
=

5
4

mµ2
s g2 cos2 β t2. (32)

The work of rolling force friction can be expressed as follows:

W fr = µrmg cos β · x = µrmgh cot β. (33)

Using the expressions in Equations (28), (31) and (32), the overall mechanical energy can be calculated as a
function of height and compared with the initial potential energy (by neglecting the air resistance) [7]. In Figure 7,
it can be seen that the fit to Equation (24) is very good for all initial heights.
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Figure 7. The total mechanical energy (in units of erg) as a function of the initial height h (in cm).
The blue line describes the potential energy mgh, and the light-blue line indicates the total energy
calculated using Equations (28), (31) and (32). The remaining lines indicate kinetic energy, rotational
energy, and the work of rolling friction force as a function of the initial height. The correspondence
between the calculation and the theory is very good and indicates that the motion of the ball down the
sloping plane is a rolling without smoothing.

4. Conclusions

The isochronous qualities of the cycloid were studied, both analytically and experimentally. We saw that
there is a discrepancy between theory and experiment, on the order of 10%. We attribute this disparity to some
skidding along the path, specifically in the initial stages of movement, which results in some energy loss to heat.
Additional factors are the rolling deformations and the point mass sliding vs rolling ball approximation that
might contribute a 1% disparity between theory and experiment. The experimental setups that were introduced
are relatively inexpensive and easy to build. This might lead us to consider incorporating the cycloid into the
physics curriculum, even at the high school level. The system allows investigation of the motion of small balls
along curved paths and helps in demonstrating the amazing properties of a cycloid which is both brachistochrone
and tautochrone. In principle, students can measure the ball velocity using a light gate and the elapsed time using
Audacity software and plot the ball velocity versus time along the cycloid path. This will allow them to calculate
the acceleration and will help them to understand that the final velocity depends only on the initial height and
that, due to energy conservation, the acceleration and times along different ramps can be different.
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Appendix A. Huygens’ Proof That a Cycloid Is an Isochronic Curve 2

The calculation of the cycle time of the cycloid plot is usually done using integral calculus and the geometric
properties of the cycloid, and Huygens succeeded in solving the problem without the use of integrals but by
brilliant intuition. This is a good opportunity to trace the thinking of one of the great scientists of the 20th century.
First, Huygens uses a geometric feature of the cycloid that is shown in Figure A1.

The tangent AtF to the cycloid, which is also the direction of the velocity of the point moving on the track,
cuts the circle at the highest point; AtBt is the circle diameter, and the point Bt is the lowest point. Therefore,
the peripheral angle that rests on it is straight, and the AtFBt triangle is a straight triangle. In this triangle,
AtBt = 2r sin α, and r is the radius of the circle, making y = EtBt = 2r sin2 α; this produces very important
characteristics of the cycloid:

sin α =

√
y
2r

. (A1)

Figure A1. The tangent to a cycloid at a point At passes through the point F that is the highest point of
the circle and creates an angle α with the diameter FBt. The proof that the tangent passes at the highest
point is that the direction of the tangent AtF is the same as the velocity of the point on the cycloid, and
that velocity is equal to two equal velocities; one is the right velocity parallel to the x axis and the other
is the tangential velocity resulting from the circular motion. Using geometric considerations, it can be
shown that FBt is indeed the diameter of the circle and, therefore, AtBt is a normal for the cycloid. This
feature can also be demonstrated by writing the tangent equation to the cycloid and finding its points
of intersection with the circle.

Suppose that a point mass moves on the cycloid in Figures A1 and A2 and that at time t = 0 it is at a point
C0 at distance H above the plane. The goal is to find the movement time τ of the mass from the starting point B to
the point at the bottom of the cycloid. Assuming that there is no loss of energy and that the movement is only
smooth motion, then the cycle time of the movement (up to C2τ and back) will be T = 4τ. We are interested in
finding out the dependence of τ on H. Suppose that at time t the mass is at a point Ct at distance h above the
plane. From the energy conservation law, we can express the speed of the mass at this point:

v =
√

2g(H − h). (A2)

Now look at the projection of the position of the mass on the vertical C0B′. At time t, this projection is at
point C′t , and at time τ, it is at point B′ after a vertical distance H. The vertical component w of the velocity of the

mass at point Ct creates an angle α with the velocity and, therefore, w = v cos α. By Equation (30), cos α =
√

2r−y
2r ,

while y = 2r− h, and this is the Ct from the upper right. Therefore, we obtain cos α =
√

h/2r, and for w,

w =

√
g
r

h(H − h) (A3)

This is where Huygens’ brilliance comes into play when he notices that the vertical velocity component
of a circular motion is at a constant velocity in a circle with diameter H similar to w (Figure A2). To prove this,
we will mark the C′′t point on the circle opposite to the point C′t and the length of the segment C′t C′′t (according
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to the Pythagorean theorem in the triangle OC′t C′′t ). The movement of the mass on the cycloid is projected to
move on the semicircle of its diameter H, because in both cases the vertical distance is the same, so the vertical
component velocity must be the same (because the times are equal). Thus, they are similar triangles (both triangles
are right-angled and they have two vertical sides, respectively). Note that the length of the vertical line coming
from a point C′t is w and from a triangulation similarity we can draw√

h(H − h)
w

=
H
2u

(A4)

where u is the speed along the circular motion. From Equations (32) and (33), we conclude that this speed is

u =

√
H2g
4r

. (A5)

This speed is constant and equal to H
2 ω when the angular velocity ω =

√
g
r . In the motion of the point

mass from C0 to B, a half-circle is moved from point C0 to point B′ at a time equal to the half-time surrounding
τ = 2πω, independent of h. The cycle time along the cycloid will therefore be

T = 4τ = 4π

√
r
g

. (A6)

In conclusion, Huygens’ proof is based on the idea that the velocity vector can be displayed along the cycloid
as a sum of two velocities: the vertical axis is a circular motion at angular velocity independent of the starting
height and the horizontal axis.

Figure A2. Huygens’ proof is based on the idea that the velocity vector along the cycloid can be
presented as a sum of two speeds: the vertical axis is a circular motion at angular velocity independent
of the starting height along the semicircle C0C′′t B′ and the horizontal axis is a variable speed movement
that increases with time.
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